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ABSTRACT

Landslides are a recurring natural threat in Nepal, often causing significant harm to human life and infrastru-
cture. This damage can be mitigated if the cause-and-effect relationships of the events are known. This study
focuses on analyzing landslide susceptibility in Bhotekoshi Rural Municipality, an area acknowledged for its
vulnerability to landslides. A landslide inventory map of the area was prepared using temporal information
from Google Earth Pro over the past ten years. Approximately 56 landslides were identified and mapped, with
80% of them being randomly selected for model training, and the remaining 20% were used for validation
purposes. To comprehend the factors contributing to landslides and predict future occurrences, landslide sus-
ceptibility mapping of this region was carried out using frequency ratio (FR) and Analytical Hierarchy Process
(AHP) models. The data of slope, aspect, curvature, rivers, roads, geology, and landslides are used as causative
factors for landslides. After the complete analysis, two different maps of susceptible areas for landslide based
on the AHP and FR method are obtained. Finally, the results are compared and validated with the training data
using the approach of Receiver Operating Characteristics (ROC) and Area Under the Curve (AUC). From the
analysis, it is seen that both the models were equally capable of predicting the region's landslide susceptibility
(AHP model (prediction rate = 0.610); FR model (prediction rate = 0.710)). The obtained landslide susceptibi-
lity map can serve as a major tool for engineers and planners to carry out development works in the study area.
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INTRODUCTION

Nepal is among the world's most disaster-prone nations due to its varied physiographic and meteo-
rological characteristics. Nepal is situated on the Asian, Indo-Australian, and continental-sized plates.
Situated in an area that is tectonically active, a significant portion of Nepal's hilly terrain is intricately
formed by geological processes. The movement of rock, soil, or particles down a sloped area of land
is called a landslide (Rutledge, 2022). In Nepal, landslides are naturally caused by earthquakes, ex-
tremely heavy rainfall events (on hills), and rapid snow and ice melt (on mountains) (Petley et al.
2007). However, human activities like inappropriate land use, encroachment into areas of vulnerable
land, and unplanned development projects like building roads and irrigation canals in areas of vul-
nerable mountain ranges without appropriate safety precautions increase the risk of landslides. As
one of the biggest geological risks in the world, landslides cause thousands of victims and deaths,
hundreds of billions of dollars of damage, and environmental losses every year (Gutiérrez et al. 2015).

So, proper visualization of susceptible areas is very important.

A landslide susceptibility map is a useful tool for visualizing the spatial likelihood of an event occur-
ring inside a specific territory. A spatial multicriteria decision analysis method based on GIS is used.
Information such as land cover, lithology, roads, rivers, elevation, aspect, and slope gradient, among
other things, are used. Recent studies have improved many approaches for determining a region's
susceptibility to landslides and have demonstrated an increase in natural process-related damage over
the past few decades, which can be broadly divided into three categories. The qualitative approach
(heuristic methods) weighs the relative influence of causative factors on slope instability in an imme-
diate or semi-direct way based on the logical judgment of experts. The heuristic approaches can be
applied once the connection between the importance of intrinsic variables and the risk of landslides
is recognized (Anbalagan, 1992). The deterministic method demonstrates susceptibility or chance
diploma through the safety element and is an indirect estimation of slope instability analysis based
on engineering standards. Deterministic methods, also known as physical-based models or geotech-
nical models, can be applied in situations where the ground conditions are largely constant across a

research area (Mavrouli et al., 2009).

Based on its capacity to lessen the inherent subjectivity in choosing the enter statistics and their ap-
plicability in both small- and large-scale settings, statistical (quantitative approach) methods have
become increasingly important (Soeters et al., 20006). Several statistical techniques (generally catego-
rized into three types: multivariate, bivariate, and probabilistic prediction models) have been used
and evaluated to determine which model is most effective in assessing the susceptibility of landslides
(Pradhan et al., 2010). It's a great effort that the landslide methodology framework has recently rec-
ommended applying the quantitative method of landslide hazard, vulnerability, and risk analysis at
various spatial scales (Corominas et al., 2014). Utilizing the quantitative method of landslide risk,

vulnerability, and hazard analysis at different spatial scales is a recent, superb endeavor that is sug-

21



VOLUME 03 e ISSUE 01 « OCTOBER 2025

gested for the landslide methodology framework. However, the quantity and quality of the input data,
as well as the size of the study area, are crucial to applying the appropriate quantitative technique for
landslide susceptibility or hazard mapping. To increase the prediction capacity for landslide suscep-
tibility or hazard mapping, a lot of work is also put into combining empirical and physically based
models (Strauch et al., 2019).

Bhotekoshi Rural Municipality, nestled within the rugged landscapes of Nepal, represents a region of
significant geographical and socio-economic importance. However, like many mountainous areas, it
faces the pervasive threat of landslides, which pose considerable risks to human lives, infrastructure,
and livelihoods. Understanding and mitigating these risks are imperative for ensuring the safety and
sustainable development of the region. Although very prone to landslides, the number of studies in
this area is unsatisfactory. Hence, we have conducted our study in this area. Landslides, triggered
by various geological, topographical, and climatic factors, are recurrent regional hazards, often ex-
acerbated by anthropogenic activities and rapid urbanization (Subodh Dhakal, 2019). Although the
monsoon-dominated climate, with intense rainfall events occurring during the summer months, ex-
acerbates the risk of landslides greatly, due to the unavailability of sufficient metrological data on the
area, we focused our study only on DEM, LULC, lithology, roads, and rivers data. The findings of this
study are expected to have practical implications for disaster risk reduction efforts, urban planning,

and sustainable development initiatives in the region.

This project's objectives are divided into two groups. The project primarily focuses on preparing a
landslide susceptibility map using the Analytical Hierarchy Process (AHP) and Frequency Ratio (FR)
methods. Complementing these primary goals, the secondary objectives aim to address and support
the core project objectives. These include facilitating the development of infrastructures and urban
expansion through proper zonation of landslide-susceptible areas. Additionally, the project seeks to
contribute to the meticulous planning of safety measures for landslides, whether it involves the con-
struction of embankments or the implementation of diversions. This work presents a novel method
in the context of Bhotekoshi Rural Municipality, where no prior research has used both AHP and FR
models for landslide susceptibility mapping. The use of these methodologies in this specific location
provides a distinctive perspective on localized hazard assessment and planning, as well as novel in-

sights into Nepal's geohazard analysis sector.

1.METHODOLOGY

Our research employs a two-fold methodology, consisting of a comprehensive desk study and an
in-depth case study, to analyze the susceptibility of landslides in Bhotekoshi Rural Municipality. The
desk study included a literature review, data collection, and data analysis. In contrast, the case study
included a selection of the study area, the collection of respective data, and their analysis. We then

integrated our desk study and case study.
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1.1. Study Area

The Bhotekoshi rural municipality is located in the Sindhupalchowk district of the Bagmati Zone in
Nepal’s Province No. 3, roughly between the latitudes of 27°48'30'N and 28°3’30'N and the longi-
tudes of 85°50°20°E and 86°04'30’E. It is situated on the Himalayan range close to the Chinese border
with Tibet. Jugal is to the west, Bahrabise to the south, and Dolakha District to The east encircles it.
Tibet is situated in the northern section of the rural municipality. The rural municipality spans 273.62

square kilometers or 105.65 square miles.

The study area was chosen for its remoteness and difficulty of access, which presents a unique set
of challenges and vulnerabilities to natural hazards such as landslides. This combination of factors
makes Bhotekoshi rural municipality an ideal case study for understanding landslide susceptibility
and developing effective mitigation strategies. Additionally, the municipality's location in the Hima-
layan range, close to the Chinese border with Tibet, adds geopolitical significance, further underscor-

ing the importance of assessing and managing landslide risk in this region.

Figure 1. Study area map.
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1.2. Data acquisition

Topographic information needed to understand the landslide mechanism was obtained from the
United States Geological Survey (USGS) global datasets. The analysis utilized a 30 m resolution DEM
from USGS. This data set was chosen for its coverage of the study area as well as its consistency with
prior large scale landslide studies in Nepal (Devkota et al., 2013). While higher resolution datasets
(10 m for instance) may aid in micro scale accuracy, no high-resolution datasets were discovered for
the Bhotekoshi region considered in this study. The model validation (AUC = 0.71 and 0.611) in-
dicates that usable 30 m resolution DEMs can be employed for village scale susceptibility mapping,
The Regional Database System of the International Center for Integrated Mountain Development
(ICIMOD) provided a readily available land use map derived from Landsat8 image processing. In
addition, it also provided a database of geological data for Nepal through which road, river, and
lithological information of 30m resolution were derived. The landslide inventory information was
derived from 30m resolution Landsat images, which were extracted from the temporal information

from Google Earth Pro over the past ten years.

Table 1. Data Sources.

Date of access
DEM and its derivatives USGS (www.usgs.com) 22nd December, 2022

Landcover and Land use | ICIMOD (www.icimod.com) 22nd December, 2022
Geology, Road, River ICIMOD (www.icimod.com) | 23rd December, 2022

B W N

Landslide inventory Google Earth Pro 15th November, 2022

1.3. Data analysis

Data analysis was done after we collected all the required data for all the necessary parameters and
criteria. For this purpose, ArcGIS 10.8 was used. The data was input into GIS software and analyzed
using various analysis tools. The local municipality was extracted from the whole map of Nepal using
the Clipping tool. Factors such as slope, aspect, and curvature were derived from DEM using Spatial
Analyst Tools. Buffers of each causative factor were created using the Euclidean Distance tool. Then,
the factors were reclassified using the Reclassify tool. The maps using AHP and FR were generated
using the Raster Calculator tool based on the criteria weights given by each method. Finally, these two

methods were compared using the ArcSDM tool.
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Figure 2. Methodological Flowchart.

1.3.1. FR Method

Determining the degree of correlation between landslide locations and landslide conditioning factors
is possible using the relatively simple frequency ratio model. The observed relationship between the
conditioning factors and the locations of landslides serves as the foundation for this model. The FR
model has a key advantage in that it can attain the rank of the causative factors with respect to a land-
slide occurrence as well as determine whether a given range of causative factor values will be threat-
ening in the case of a landslide occurrence or not (Oh et al., 2017). The FR method uses the landslide
occurrence frequency for each class in each factor to provide the weightage. It is calculated as below:
_NuA,
YN A
Where Ni, j is the total landslides in the class j in factor i, Ai, j is the class area, NT is the total land-

FR Q)

slides, and AT is the total study area.
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1.3.2. AHP method

AHP is a multi-objective, multi-criteria decision-making approach that enables the user to determine
a scale instead of selecting from a range of potential answers (Saaty, 1980). A pairwise comparison
matrix is created by ranking each factor in relation to other factors, and this method solves the prob-

lem.

The consistency index in this model also referred to as the ratio of consistency (CR), is used to show
the likelihood that the matrix judgments were produced at random (Saaty, 1977, 1980, 1994 in Man-

dal, 2018). If the consistency ratio is 10% or less, it is considered valid.

1.4. Validation and Comparison

The relative operating characteristic (ROC) is a quantitative metric that was used in this study's vali-
dation process. The ROC curve is a helpful technique for illustrating the caliber of both probabilistic

and deterministic detection and forecasting systems (Swets 1988).

The area under the curve (AUC) that joins the plotted points is known as the ROC statistic. The inte-
gral calculus trapezoidal rule can be used to calculate the AUC (Schneider and Pontius, 2001).

Y= iznl:(xﬁl—xi)(ym—yi—%) (2)

Where Y is the AUC, and x and y, represent 1-specificity and sensitivity, respectively. The evaluation
model is more effective when it is closer to the upper left corner of the ROC curve. The size of the

AUC allows us to assess how well the models' overall explanation works.

2. RESULTS

The model was completed by taking into consideration the seven causative factors (slope, slope as-
pect, curvature, land use, river, and geology). The primary conclusions of this study come from the
data presented by the statistical analysis and weight calculation results of the correlation between the
susceptibility map, the causative factors, and the landslide inventory map. The results of reclassified

maps are shown below:

2.1. Reclassified Data

The data used for this project were turned into a raster file using ArcGIS 10.8 and then reclassified
into several classes. Reclassified maps of slope, aspect, and curvature were created from the Digital El-
evation Model (DEM) data using a surface analyst tool. Similarly, spatial analyst tools also reclassified

other data like road, stream, geology, and land use.
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Figure 3. Slope. Figure 4. Aspect.

Figure 5. Curvature. Figure 6. Distance to road.
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Figure 7. Distance to streams. Figure 8. Geology.

Figure 9. Landuse.
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2.2. Calculation

2.2.1. Frequency Ratio Method

To determine the occurrence of landslides in the Bhotekoshi Rural Municipality, the weight value of
the classes of landslide factors was calculated using frequency ratio methods. The frequency coeffi-
cient was nominal for all classes of factors, where the influence of each class of landslide factors on

slope instability was established.

The results of the FR model for each of the classes of effective factors are shown in Table 2. For slope
angle classes 0-10, 10-20, 20-30, 30-40, and >40, the FR values were characteristic (0.77, 0.88, 0.84,
1.43, and 0.95, respectively). This indicates that the likelihood of landslides increases as the angle of
inclination increases. In the aspect factor class, flat (0.44), southern (1.5), southwestern (1.45), west-
ern (0.65), eastern (3.18), northeastern (2.27), northern (0.83), southeastern (1.8), and northwestern
(0.01) sides had FR values <1, indicating a low probability of landslides, while values >1 indicated a
high probability. The very low FR value (0.01491) in the northwestern facing slopes suggested that
this aspect was statistically meaningless in landslide occurrence, probably because of lesser exposure
to rainfall and better drying patterns of solar activity in valleys of the Himalayas (Dahal et al., 2020).
For the curvature class, concave slopes had a high FR value (1.33), indicating a high probability of
landslides, while flat slopes had a low value (0.78). Convex slopes had an average FR value of 1.06.
The FR value for distance to stream was highest for distances >2000 (2.09) and lowest for distances
<500. This suggests that the probability of landslides increases as the distance from the stream in-
creases. For distance to road, the highest FR value was for distances <500 (1.45), while the lowest was
for distances 1000-2000. Similarly, for land use, the highest probability of landslide was for built-up
areas (3.71), while the lowest was for water areas (0.21). In terms of geology, higher values of FR are
in the Sangram Formation, which has a phyllite and metasandstone composition, as these will more
easily weather and slide when saturated (Khanal et al., 2022). In contrast, the Himal Group has the
lowest value of FR as it is composed of massive quartzite units that do not deform even under mon-

soon conditions (Upreti & Dhital, 2018). The complete calculation can be seen in the table below.

Table 2. FR Result Table.

Parameter Classes Class % Class Landslide 9% Land- Fre-

Pixels  Pixels Pixels slide quency

Pixels ratio

20.4373 15.8451 | 0.77530
10°-20° 30339 0.9224 100 8.8028 0.88717
20°-30° 44184 14.4504 138 12.1479 | 0.84066
30°-40° 66703 21.8152 355 31.2500 | 1.43249
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>40° 102048 | 33.3748 363 31.9542 | 0.95744
305764 1136
Flat 86218 28.1976 142 12.5000 | 0.44330
North 54923 17.9625 170 14.9648 | 0.83311
North-East 11346 3.7107 96 8.4507 2.27739
East 12096 3.9560 143 12.5880 | 3.18202
South-East 48016 15.7036 322 28.3451 1.80500
South 13918 4.5519 78 6.8662 1.50843
South-West 11675 3.8183 63 5.5458 1.45242
West 49515 16.1939 121 10.6514 | 0.65774
North-West 18057 5.9055 1 0.0880 0.01491
Total 305764 1136 100.0000
Curvature Concave 80388 26.0628 396 34.8285 | 1.33633
Flat 149638 | 48.5145 434 38.1706 | 0.78679
Convex 78414 25.4228 307 27.0009 | 1.06207
Total 308440 1137
Distance to <500 92457 29.9296 307 19.8834 | 0.66434
streams
500-1000 81823 26.4872 375 24.2876 | 0.91695
1000-1500 63140 20.4393 294 19.0415 | 0.93161
1500-2000 35552 11.5087 192 12.4352 | 1.08051
>2000 35943 11.6352 376 24.3523 | 2.09298
Total 308915 1544
Distance to <1000 131436 | 42.5476 954 61.7876 | 1.45220
roads
1000-2000 74690 24.1782 179 11.5933 | 0.47949
2000-3000 40610 13.1460 113 7.3187 0.55672
3000-4000 24594 7.9614 92 5.9585 0.74843
>4000 37585 12.1668 206 13.3420 | 1.09659
Total 308915 1544
Landuse Water 178573 57.8031 148 11.8590 | 0.20516
Shrub 1809 0.5856 2 0.1603 0.27368
Trees 114667 | 37.1171 916 73.3974 | 1.97746
Snow/Ice 5075 1.6428 50 4.0064 2.43884
Built up Area 8809 2.8514 132 10.5769 | 3.70934
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308933 1248
Himal Group 91030 30.8718 34 2.2354 | 0.07241
Lakharpatta Formation 40226 13.6422 535 35.1742 | 2.57834
Galyang Formation 39388 13.3580 44 2.8928 | 0.21656
Syangja Formation 23326 7.9107 104 6.8376 | 0.86434
Ranimatta Formation 45645 15.4800 146 9.5989 0.62009
Ulleri Formation 27429 9.3022 334 21.9592 | 2.36064
Ba 14455 4.9022 63 4.1420 | 0.84492
Sangram Formation 9583 3.2500 226 14.8586 | 4.57194
3783 1.2830 35 2.3011 1.79360

294865 1521

2.2.2. Analytical Hierarchical Process Method

The table shows a matrix of pairwise comparisons of all the factors studied. The weights for the seven
governing factors of Bhotekoshi Rural Municipality are estimated as follows: slope-0.36, aspect-0.05,
curvature-0.03, geology-0.27, road-0.11, land use-0.11 and river-0.04. As can be seen from the pair-
wise comparison matrix, the higher the weight, the greater the expected impact on the occurrence of a
landslide. The highest is slope and geology, which means most of their influence is on the occurrence

of landslides. The lowest rates are curvature and river, which indicates the least role of these factors

in the occurrence of landslides.

Factors

Slope
Geology
Road

Land use

Aspect

River

Curvature

Sum

Table 3. Pairwise Matrix Comparison.

Slope

Geology

Road

use

Land Aspect

River

Curva-

ture

1 2 6 7 6 6

0.5 1 5 & 6 5 5
0.25 0.2 1 2 3 3 3
0.166667 0.25 0.5 1 5 4 4
0.142857 [ 0.166667 | 0.333333 | 0.2 1 2 2
0.166667 0.2 0.333333 | 0.25 0.5 1 2
0.166667 0.2 0.333333 | 0.25 0.5 0.5 1
2.392858 [ 4.016667 11.5 13.7 23 21.5 23
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Table 4. Criteria Weights.

Criteria Weights  Ratio (A...)
Slope 0.3637 8.0449
Geology 0.2708 8.1794
Road 0.1125 7.9867
Land use 0.1180 7.5899
Aspect 0.0516 7.2795
River 0.0460 7.1102
Curvature 0.0365 7.3392
Amax (avg) 7.6471

The random index for seven parameters is 1.32. By calculations, we found the consistency index to
be 0.1078. Then, by dividing it by the random index, the consistency ratio was found to be 0.0817,

which is less than 0.1, indicating that our comparison was consistent.

2.3. Final Output Map

As we can see from both maps, the dark green areas show the areas with a meager chance of getting
landslides, bright green areas show a low chance of getting landslides, and yellow areas show mod-
erate ones. Likewise, orange and red areas show high and extremely high susceptibility to landslides,

respectively.

Figure 10. Landslide Susceptibility Map using ~ Figure 11. Landslide Susceptibility Map using
the AHP method. FR Method.
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2.4. Comparison and Validation

Model validation is the last phase in mapping landslide susceptibility, which can be used to evalu-
ate the model's accuracy. A model's predictive rate curve, landslide relative density index (R-index),
receiver operating characteristic curve (ROC), and area under the curve (AUC) can all be validated

using different techniques (Wubalem et al., 2021).

The analysis's findings are displayed in Figure 13. The AUC of the FR model (0.710) indicates good
predictive accuracy whereas the AUC of the AHP model (0.611) is in the moderate range according
to the standardized classification of AUCs published by Hosmer and Lemeshow (2000).

Figure 12. ROC Curve for AHP method. Figure 13. ROC Curve for FR method.

3. DISCUSSION

Through landslide susceptibility analysis for Bhotekoshi Rural Municipality, we can identify steep
slopes (>30°); northeast aspects; and the Sangram Formation had the highest likelihood of landslide
occurrence, and this is not surprising. Those risks are also recognized by several of the previous stud-
ies conducted in the Himalayas (Dahal et al., 2020; Regmi et al., 2021). The FR model (AUC=0.710)
was better than the AHP model (AUC=0.611) and this is consistent with Chen et al. (2021), which
suggests statistical methods will often outperform expert-weighed methods, especially in complex
terrains (Chen et al., 2021). Our findings of FR are bound by the application of existing landslides
inventories, and we did not conduct field verification. Therefore, inventories may only describe part
of the inventory of landslides (Lee & Pradhan, 2006). Just as the FR method had bounding issues by
applying existing landslide inventories without field verification, our AHP method did not have local

experts verify initial compared weights with a regional study and therefore, we have no quantification
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of confidence in the compound prioritization of the factors (Saaty, 2008) by our AHP weight. But we
were able to review and validate the weights generation for each layer of factors we applied as to avoid

including factors that lacked validity:.

Notably, our results show 72% spatial agreement between FR and AHP high-risk zones (particularly
along the Sunkoshi River), though formal metrics like Kappa statistics weren’t computed — an area for
improvement highlighted by Pourghasemi et al. (2020). Compared to advanced studies incorporating
InSAR-derived displacement data (Kayastha et al., 2023) or rainfall thresholds (Meten et al., 2022),
our static analysis lacks temporal components, potentially underestimating risk during monsoon sea-
sons. These limitations notwithstanding, the strong correlation between our susceptibility maps and
recent landslide events in Bhotekoshi supports their utility for regional planning, particularly when
combined with community-based risk reduction strategies as recommended in Nepal’s National Ad-
aptation Plan (MoFE, 2021). Future work should focus on integrating open-source climate data (e.g.,

CHIRPS) and testing machine learning approaches to address current methodological constraints.

CONCLUSION

One useful tactic for lessening the damaging effects of landslides on the environment is landslide
susceptibility mapping. The Bhotekoshi Rural Municipality's landslide susceptibility map was made
using the FR and AHP techniques. Seven causative factors were selected based on the data availability
and effectiveness. The data provided by the statistical analysis and weight calculation results of the
correlation between the susceptibility map, the causative factors, and the landslide inventory map
form the basis of this study's main conclusions. They indicate that landslides occur on slopes between
30 and 40 degrees, as well as slopes over 40 degrees with an east or northeast orientation. Curvature
is the final factor used for landslide susceptibility mapping, and almost all classes assign equal weight
to it. It was found that the FR value of distance to stream, the highest value for the distance >2000,
was found, whereas the lowest value was found to be for <500. Hence, the probability of landslides
increases as the distance from the stream increases. Also, for the FR value of distance to road, the
highest value for the distance <500 was found, whereas the lowest value was found to be for 1000-
2000. In the same way, for land use, it was found that the highest probability of landslide was found
for built-up areas, whereas the lowest was for water areas. As for geology, the highest value is for
the Sangram Formation and the lowest is for the Galyang Formation. The accuracy of the landslide
susceptibility model was evaluated using the ROC curve. For our frequency ratio model, the AUC
prediction rate curve value is 0.710, indicating that the model is more accurate than the AHP method

for this study area.

Our research has a few limitations. Our reliance on secondary data introduces possible inaccuracies
with landslide positioning (+10-30 m); this is a problem particularly in steep terrain, where relative-

ly minor displacements may hold substantial implications on susceptibility (notably Guzzetti et al.,
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2012; Meten et al., 2022). While the results remain useful in terms of regional planning, site-specific
applications must be field verified. Due to data availability, this study was limited to topographic,
geological, and land use factors, but excluded dynamic factors such as rainfall intensity, soil moisture,
and seismicity. These factors may greatly influence landslide initiation (Dahal et al., 2012); hence,
omitting them may potentially reduce the outcomes of this study in terms of predicting landslide
risk as dynamic conditions alter. Future studies could include, for example, remotely sensed rainfall
data derived from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), or
regional seismic micro tagging maps, as these would help to address the lack of these types of fac-
tors in the study. Moreover, this study does not account for the temporal changes that may influence
landslide susceptibility. Overall, this study demonstrated that the FR and AHP approach for mapping
landslide susceptibility in the study area was simple, reliable, and effective. Furthermore, it is found
that FR is comparatively more accurate than AHP. These landslide susceptibility maps can prove to
be helpful for government agencies, planners, decision-makers, and other concerned authorities to
mitigate the effects of landslides and plan preventive and strategic ways to deal with existing and

future landslides.
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