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ABSTRACT

Landslides are a recurring natural threat in Nepal, often causing significant harm to human life and infrastru-
cture. This damage can be mitigated if the cause-and-effect relationships of the events are known. This study 
focuses on analyzing landslide susceptibility in Bhotekoshi Rural Municipality, an area acknowledged for its 
vulnerability to landslides. A landslide inventory map of the area was prepared using temporal information 
from Google Earth Pro over the past ten years. Approximately 56 landslides were identified and mapped, with 
80% of them being randomly selected for model training, and the remaining 20% were used for validation 
purposes. To comprehend the factors contributing to landslides and predict future occurrences, landslide sus-
ceptibility mapping of this region was carried out using frequency ratio (FR) and Analytical Hierarchy Process 
(AHP) models. The data of slope, aspect, curvature, rivers, roads, geology, and landslides are used as causative 
factors for landslides. After the complete analysis, two different maps of susceptible areas for landslide based 
on the AHP and FR method are obtained. Finally, the results are compared and validated with the training data 
using the approach of Receiver Operating Characteristics (ROC) and Area Under the Curve (AUC). From the 
analysis, it is seen that both the models were equally capable of predicting the region's landslide susceptibility 
(AHP model (prediction rate = 0.610); FR model (prediction rate = 0.710)). The obtained landslide susceptibi-
lity map can serve as a major tool for engineers and planners to carry out development works in the study area.
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INTRODUCTION

Nepal is among the world's most disaster-prone nations due to its varied physiographic and meteo-

rological characteristics. Nepal is situated on the Asian, Indo-Australian, and continental-sized plates. 

Situated in an area that is tectonically active, a significant portion of Nepal's hilly terrain is intricately 

formed by geological processes. The movement of rock, soil, or particles down a sloped area of land 

is called a landslide (Rutledge, 2022). In Nepal, landslides are naturally caused by earthquakes, ex-

tremely heavy rainfall events (on hills), and rapid snow and ice melt (on mountains) (Petley et al. 

2007). However, human activities like inappropriate land use, encroachment into areas of vulnerable 

land, and unplanned development projects like building roads and irrigation canals in areas of vul-

nerable mountain ranges without appropriate safety precautions increase the risk of landslides. As 

one of the biggest geological risks in the world, landslides cause thousands of victims and deaths, 

hundreds of billions of dollars of damage, and environmental losses every year (Gutiérrez et al. 2015). 

So, proper visualization of susceptible areas is very important. 

A landslide susceptibility map is a useful tool for visualizing the spatial likelihood of an event occur-

ring inside a specific territory. A spatial multicriteria decision analysis method based on GIS is used. 

Information such as land cover, lithology, roads, rivers, elevation, aspect, and slope gradient, among 

other things, are used. Recent studies have improved many approaches for determining a region's 

susceptibility to landslides and have demonstrated an increase in natural process-related damage over 

the past few decades, which can be broadly divided into three categories. The qualitative approach 

(heuristic methods) weighs the relative influence of causative factors on slope instability in an imme-

diate or semi-direct way based on the logical judgment of experts. The heuristic approaches can be 

applied once the connection between the importance of intrinsic variables and the risk of landslides 

is recognized (Anbalagan, 1992). The deterministic method demonstrates susceptibility or chance 

diploma through the safety element and is an indirect estimation of slope instability analysis based 

on engineering standards. Deterministic methods, also known as physical-based models or geotech-

nical models, can be applied in situations where the ground conditions are largely constant across a 

research area (Mavrouli et al., 2009). 

Based on its capacity to lessen the inherent subjectivity in choosing the enter statistics and their ap-

plicability in both small- and large-scale settings, statistical (quantitative approach) methods have 

become increasingly important (Soeters et al., 2006). Several statistical techniques (generally catego-

rized into three types: multivariate, bivariate, and probabilistic prediction models) have been used 

and evaluated to determine which model is most effective in assessing the susceptibility of landslides 

(Pradhan et al., 2010). It's a great effort that the landslide methodology framework has recently rec-

ommended applying the quantitative method of landslide hazard, vulnerability, and risk analysis at 

various spatial scales (Corominas et al., 2014). Utilizing the quantitative method of landslide risk, 

vulnerability, and hazard analysis at different spatial scales is a recent, superb endeavor that is sug-
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gested for the landslide methodology framework. However, the quantity and quality of the input data, 

as well as the size of the study area, are crucial to applying the appropriate quantitative technique for 

landslide susceptibility or hazard mapping. To increase the prediction capacity for landslide suscep-

tibility or hazard mapping, a lot of work is also put into combining empirical and physically based 

models (Strauch et al., 2019).

Bhotekoshi Rural Municipality, nestled within the rugged landscapes of Nepal, represents a region of 

significant geographical and socio-economic importance. However, like many mountainous areas, it 

faces the pervasive threat of landslides, which pose considerable risks to human lives, infrastructure, 

and livelihoods. Understanding and mitigating these risks are imperative for ensuring the safety and 

sustainable development of the region. Although very prone to landslides, the number of studies in 

this area is unsatisfactory. Hence, we have conducted our study in this area. Landslides, triggered 

by various geological, topographical, and climatic factors, are recurrent regional hazards, often ex-

acerbated by anthropogenic activities and rapid urbanization (Subodh Dhakal, 2019). Although the 

monsoon-dominated climate, with intense rainfall events occurring during the summer months, ex-

acerbates the risk of landslides greatly, due to the unavailability of sufficient metrological data on the 

area, we focused our study only on DEM, LULC, lithology, roads, and rivers data. The findings of this 

study are expected to have practical implications for disaster risk reduction efforts, urban planning, 

and sustainable development initiatives in the region. 

This project's objectives are divided into two groups. The project primarily focuses on preparing a 

landslide susceptibility map using the Analytical Hierarchy Process (AHP) and Frequency Ratio (FR) 

methods. Complementing these primary goals, the secondary objectives aim to address and support 

the core project objectives. These include facilitating the development of infrastructures and urban 

expansion through proper zonation of landslide-susceptible areas. Additionally, the project seeks to 

contribute to the meticulous planning of safety measures for landslides, whether it involves the con-

struction of embankments or the implementation of diversions. This work presents a novel method 

in the context of Bhotekoshi Rural Municipality, where no prior research has used both AHP and FR 

models for landslide susceptibility mapping. The use of these methodologies in this specific location 

provides a distinctive perspective on localized hazard assessment and planning, as well as novel in-

sights into Nepal's geohazard analysis sector.

1. METHODOLOGY 

Our research employs a two-fold methodology, consisting of a comprehensive desk study and an 

in-depth case study, to analyze the susceptibility of landslides in Bhotekoshi Rural Municipality. The 

desk study included a literature review, data collection, and data analysis. In contrast, the case study 

included a selection of the study area, the collection of respective data, and their analysis. We then 

integrated our desk study and case study.
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1.1. Study Area

The Bhotekoshi rural municipality is located in the Sindhupalchowk district of the Bagmati Zone in 

Nepal’s Province No. 3, roughly between the latitudes of 27°48’30’N and 28°3’30’N and the longi-

tudes of 85°50’20’E and 86°04’30’E. It is situated on the Himalayan range close to the Chinese border 

with Tibet. Jugal is to the west, Bahrabise to the south, and Dolakha District to The east encircles it. 

Tibet is situated in the northern section of the rural municipality. The rural municipality spans 273.62 

square kilometers or 105.65 square miles. 

The study area was chosen for its remoteness and difficulty of access, which presents a unique set 

of challenges and vulnerabilities to natural hazards such as landslides. This combination of factors 

makes Bhotekoshi rural municipality an ideal case study for understanding landslide susceptibility 

and developing effective mitigation strategies. Additionally, the municipality's location in the Hima-

layan range, close to the Chinese border with Tibet, adds geopolitical significance, further underscor-

ing the importance of assessing and managing landslide risk in this region.

Figure 1. Study area map.
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1.2. Data acquisition

Topographic information needed to understand the landslide mechanism was obtained from the 

United States Geological Survey (USGS) global datasets. The analysis utilized a 30 m resolution DEM 

from USGS. This data set was chosen for its coverage of the study area as well as its consistency with 

prior large scale landslide studies in Nepal (Devkota et al., 2013). While higher resolution datasets 

(10 m for instance) may aid in micro scale accuracy, no high-resolution datasets were discovered for 

the Bhotekoshi region considered in this study. The model validation (AUC = 0.71 and 0.611) in-

dicates that usable 30 m resolution DEMs can be employed for village scale susceptibility mapping. 

The Regional Database System of the International Center for Integrated Mountain Development 

(ICIMOD) provided a readily available land use map derived from Landsat8 image processing. In 

addition, it also provided a database of geological data for Nepal through which road, river, and 

lithological information of 30m resolution were derived. The landslide inventory information was 

derived from 30m resolution Landsat images, which were extracted from the temporal information 

from Google Earth Pro over the past ten years.

Table 1. Data Sources.

S.N Data Source Date of access

1 DEM and its derivatives USGS (www.usgs.com) 22nd December, 2022

2 Landcover and Land use ICIMOD (www.icimod.com) 22nd December, 2022

3 Geology, Road, River ICIMOD (www.icimod.com) 23rd December, 2022

4 Landslide inventory Google Earth Pro 15th November, 2022

1.3. Data analysis 

Data analysis was done after we collected all the required data for all the necessary parameters and 

criteria. For this purpose, ArcGIS 10.8 was used. The data was input into GIS software and analyzed 

using various analysis tools. The local municipality was extracted from the whole map of Nepal using 

the Clipping tool. Factors such as slope, aspect, and curvature were derived from DEM using Spatial 

Analyst Tools. Buffers of each causative factor were created using the Euclidean Distance tool. Then, 

the factors were reclassified using the Reclassify tool. The maps using AHP and FR were generated 

using the Raster Calculator tool based on the criteria weights given by each method. Finally, these two 

methods were compared using the ArcSDM tool.
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Figure 2. Methodological Flowchart.

1.3.1. FR Method 

Determining the degree of correlation between landslide locations and landslide conditioning factors 

is possible using the relatively simple frequency ratio model. The observed relationship between the 

conditioning factors and the locations of landslides serves as the foundation for this model. The FR 

model has a key advantage in that it can attain the rank of the causative factors with respect to a land-

slide occurrence as well as determine whether a given range of causative factor values will be threat-

ening in the case of a landslide occurrence or not (Oh et al., 2017). The FR method uses the landslide 

occurrence frequency for each class in each factor to provide the weightage. It is calculated as below:
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Where Ni, j is the total landslides in the class j in factor i, Ai, j is the class area, NT is the total land-

slides, and AT is the total study area.
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1.3.2. AHP method 

AHP is a multi-objective, multi-criteria decision-making approach that enables the user to determine 

a scale instead of selecting from a range of potential answers (Saaty, 1980). A pairwise comparison 

matrix is created by ranking each factor in relation to other factors, and this method solves the prob-

lem. 

The consistency index in this model also referred to as the ratio of consistency (CR), is used to show 

the likelihood that the matrix judgments were produced at random (Saaty, 1977, 1980, 1994 in Man-

dal, 2018). If the consistency ratio is 10% or less, it is considered valid. 

1.4. Validation and Comparison 

The relative operating characteristic (ROC) is a quantitative metric that was used in this study's vali-

dation process. The ROC curve is a helpful technique for illustrating the caliber of both probabilistic 

and deterministic detection and forecasting systems (Swets 1988).

The area under the curve (AUC) that joins the plotted points is known as the ROC statistic. The inte-

gral calculus trapezoidal rule can be used to calculate the AUC (Schneider and Pontius, 2001).
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Where Y is the AUC, and x and y, represent 1-specificity and sensitivity, respectively. The evaluation 

model is more effective when it is closer to the upper left corner of the ROC curve. The size of the 

AUC allows us to assess how well the models' overall explanation works.

2. RESULTS

The model was completed by taking into consideration the seven causative factors (slope, slope as-

pect, curvature, land use, river, and geology). The primary conclusions of this study come from the 

data presented by the statistical analysis and weight calculation results of the correlation between the 

susceptibility map, the causative factors, and the landslide inventory map. The results of reclassified 

maps are shown below:

2.1. Reclassified Data 

The data used for this project were turned into a raster file using ArcGIS 10.8 and then reclassified 

into several classes. Reclassified maps of slope, aspect, and curvature were created from the Digital El-

evation Model (DEM) data using a surface analyst tool. Similarly, spatial analyst tools also reclassified 

other data like road, stream, geology, and land use.
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		  Figure 3. Slope.					     Figure 4. Aspect.

		  Figure 5. Curvature.				    Figure 6. Distance to road.
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		  Figure 7. Distance to streams.			   Figure 8. Geology.

Figure 9. Landuse.
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2.2. Calculation 

2.2.1. Frequency Ratio Method 

To determine the occurrence of landslides in the Bhotekoshi Rural Municipality, the weight value of 

the classes of landslide factors was calculated using frequency ratio methods. The frequency coeffi-

cient was nominal for all classes of factors, where the influence of each class of landslide factors on 

slope instability was established. 

The results of the FR model for each of the classes of effective factors are shown in Table 2. For slope 

angle classes 0-10, 10-20, 20-30, 30-40, and >40, the FR values were characteristic (0.77, 0.88, 0.84, 

1.43, and 0.95, respectively). This indicates that the likelihood of landslides increases as the angle of 

inclination increases. In the aspect factor class, flat (0.44), southern (1.5), southwestern (1.45), west-

ern (0.65), eastern (3.18), northeastern (2.27), northern (0.83), southeastern (1.8), and northwestern 

(0.01) sides had FR values <1, indicating a low probability of landslides, while values >1 indicated a 

high probability. The very low FR value (0.01491) in the northwestern facing slopes suggested that 

this aspect was statistically meaningless in landslide occurrence, probably because of lesser exposure 

to rainfall and better drying patterns of solar activity in valleys of the Himalayas (Dahal et al., 2020). 

For the curvature class, concave slopes had a high FR value (1.33), indicating a high probability of 

landslides, while flat slopes had a low value (0.78). Convex slopes had an average FR value of 1.06. 

The FR value for distance to stream was highest for distances >2000 (2.09) and lowest for distances 

<500. This suggests that the probability of landslides increases as the distance from the stream in-

creases. For distance to road, the highest FR value was for distances <500 (1.45), while the lowest was 

for distances 1000-2000. Similarly, for land use, the highest probability of landslide was for built-up 

areas (3.71), while the lowest was for water areas (0.21). In terms of geology, higher values of FR are 

in the Sangram Formation, which has a phyllite and metasandstone composition, as these will more 

easily weather and slide when saturated (Khanal et al., 2022). In contrast, the Himal Group has the 

lowest value of FR as it is composed of massive quartzite units that do not deform even under mon-

soon conditions (Upreti & Dhital, 2018). The complete calculation can be seen in the table below.

Table 2. FR Result Table.

Parameter Classes Class 

Pixels

% Class 

Pixels

Landslide 

Pixels

% Land-

slide 

Pixels

Fre-

quency 

ratio

Slope <10˚ 62490 20.4373 180 15.8451 0.77530

10˚-20˚ 30339 9.9224 100 8.8028 0.88717

20˚-30˚ 44184 14.4504 138 12.1479 0.84066

30˚-40˚ 66703 21.8152 355 31.2500 1.43249
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>40˚ 102048 33.3748 363 31.9542 0.95744

Total  305764  1136  

Aspect Flat 86218 28.1976 142 12.5000 0.44330

North 54923 17.9625 170 14.9648 0.83311

North-East 11346 3.7107 96 8.4507 2.27739

East 12096 3.9560 143 12.5880 3.18202

South-East 48016 15.7036 322 28.3451 1.80500

South 13918 4.5519 78 6.8662 1.50843

South-West 11675 3.8183 63 5.5458 1.45242

West 49515 16.1939 121 10.6514 0.65774

North-West 18057 5.9055 1 0.0880 0.01491

Total 305764 1136 100.0000

Curvature Concave 80388 26.0628 396 34.8285 1.33633

Flat 149638 48.5145 434 38.1706 0.78679

Convex 78414 25.4228 307 27.0009 1.06207

Total 308440 1137

Distance to 

streams

<500 92457 29.9296 307 19.8834 0.66434

500-1000 81823 26.4872 375 24.2876 0.91695

1000-1500 63140 20.4393 294 19.0415 0.93161

1500-2000 35552 11.5087 192 12.4352 1.08051

>2000 35943 11.6352 376 24.3523 2.09298

Total 308915 1544

Distance to 

roads

<1000 131436 42.5476 954 61.7876 1.45220

1000-2000 74690 24.1782 179 11.5933 0.47949

2000-3000 40610 13.1460 113 7.3187 0.55672

3000-4000 24594 7.9614 92 5.9585 0.74843

>4000 37585 12.1668 206 13.3420 1.09659

Total 308915 1544

Landuse Water 178573 57.8031 148 11.8590 0.20516

Shrub 1809 0.5856 2 0.1603 0.27368

Trees 114667 37.1171 916 73.3974 1.97746

Snow/Ice 5075 1.6428 50 4.0064 2.43884

Built up Area 8809 2.8514 132 10.5769 3.70934
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Total 308933 1248

Geology Himal Group 91030 30.8718 34 2.2354 0.07241

Lakharpatta Formation 40226 13.6422 535 35.1742 2.57834

Galyang Formation 39388 13.3580 44 2.8928 0.21656

Syangja Formation 23326 7.9107 104 6.8376 0.86434

Ranimatta Formation 45645 15.4800 146 9.5989 0.62009

Ulleri Formation 27429 9.3022 334 21.9592 2.36064

Ba 14455 4.9022 63 4.1420 0.84492

Sangram Formation 9583 3.2500 226 14.8586 4.57194

3783 1.2830 35 2.3011 1.79360

Total 294865 1521

2.2.2. Analytical Hierarchical Process Method 

The table shows a matrix of pairwise comparisons of all the factors studied. The weights for the seven 

governing factors of Bhotekoshi Rural Municipality are estimated as follows: slope-0.36, aspect-0.05, 

curvature-0.03, geology-0.27, road-0.11, land use-0.11 and river-0.04. As can be seen from the pair-

wise comparison matrix, the higher the weight, the greater the expected impact on the occurrence of a 

landslide. The highest is slope and geology, which means most of their influence is on the occurrence 

of landslides. The lowest rates are curvature and river, which indicates the least role of these factors 

in the occurrence of landslides. 

Table 3. Pairwise Matrix Comparison.

Factors Slope Geology Road Land 

use

Aspect River Curva-

ture

Slope 1 2 4 6 7 6 6

Geology 0.5 1 5 4 6 5 5

Road 0.25 0.2 1 2 3 3 3

Land use 0.166667 0.25 0.5 1 5 4 4

Aspect 0.142857 0.166667 0.333333 0.2 1 2 2

River 0.166667 0.2 0.333333 0.25 0.5 1 2

Curvature 0.166667 0.2 0.333333 0.25 0.5 0.5 1

Sum 2.392858 4.016667 11.5 13.7 23 21.5 23
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Table 4. Criteria Weights.

Criteria Weights Ratio ( maxm )

Slope 0.3637 8.0449

Geology 0.2708 8.1794

Road 0.1125 7.9867

Land use 0.1180 7.5899

Aspect 0.0516 7.2795

River 0.0460 7.1102

Curvature 0.0365 7.3392

maxm  (avg) 7.6471

The random index for seven parameters is 1.32. By calculations, we found the consistency index to 

be 0.1078. Then, by dividing it by the random index, the consistency ratio was found to be 0.0817, 

which is less than 0.1, indicating that our comparison was consistent.

2.3. Final Output Map

As we can see from both maps, the dark green areas show the areas with a meager chance of getting 

landslides, bright green areas show a low chance of getting landslides, and yellow areas show mod-

erate ones. Likewise, orange and red areas show high and extremely high susceptibility to landslides, 

respectively.

Figure 10. Landslide Susceptibility Map using 

the AHP method.

Figure 11. Landslide Susceptibility Map using 

FR Method.
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2.4. Comparison and Validation 

Model validation is the last phase in mapping landslide susceptibility, which can be used to evalu-

ate the model's accuracy. A model's predictive rate curve, landslide relative density index (R-index), 

receiver operating characteristic curve (ROC), and area under the curve (AUC) can all be validated 

using different techniques (Wubalem et al., 2021). 

The analysis's findings are displayed in Figure 13. The AUC of the FR model (0.710) indicates good 

predictive accuracy whereas the AUC of the AHP model (0.611) is in the moderate range according 

to the standardized classification of AUCs published by Hosmer and Lemeshow (2000).

       Figure 12. ROC Curve for AHP method.	     Figure 13. ROC Curve for FR method.

3. DISCUSSION

Through landslide susceptibility analysis for Bhotekoshi Rural Municipality, we can identify steep 

slopes (>30°); northeast aspects; and the Sangram Formation had the highest likelihood of landslide 

occurrence, and this is not surprising. Those risks are also recognized by several of the previous stud-

ies conducted in the Himalayas (Dahal et al., 2020; Regmi et al., 2021). The FR model (AUC=0.710) 

was better than the AHP model (AUC=0.611) and this is consistent with Chen et al. (2021), which 

suggests statistical methods will often outperform expert-weighed methods, especially in complex 

terrains (Chen et al., 2021). Our findings of FR are bound by the application of existing landslides 

inventories, and we did not conduct field verification. Therefore, inventories may only describe part 

of the inventory of landslides (Lee & Pradhan, 2006). Just as the FR method had bounding issues by 

applying existing landslide inventories without field verification, our AHP method did not have local 

experts verify initial compared weights with a regional study and therefore, we have no quantification 
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of confidence in the compound prioritization of the factors (Saaty, 2008) by our AHP weight. But we 

were able to review and validate the weights generation for each layer of factors we applied as to avoid 

including factors that lacked validity.

Notably, our results show 72% spatial agreement between FR and AHP high-risk zones (particularly 

along the Sunkoshi River), though formal metrics like Kappa statistics weren’t computed – an area for 

improvement highlighted by Pourghasemi et al. (2020). Compared to advanced studies incorporating 

InSAR-derived displacement data (Kayastha et al., 2023) or rainfall thresholds (Meten et al., 2022), 

our static analysis lacks temporal components, potentially underestimating risk during monsoon sea-

sons. These limitations notwithstanding, the strong correlation between our susceptibility maps and 

recent landslide events in Bhotekoshi supports their utility for regional planning, particularly when 

combined with community-based risk reduction strategies as recommended in Nepal’s National Ad-

aptation Plan (MoFE, 2021). Future work should focus on integrating open-source climate data (e.g., 

CHIRPS) and testing machine learning approaches to address current methodological constraints.

CONCLUSION

One useful tactic for lessening the damaging effects of landslides on the environment is landslide 

susceptibility mapping. The Bhotekoshi Rural Municipality's landslide susceptibility map was made 

using the FR and AHP techniques. Seven causative factors were selected based on the data availability 

and effectiveness. The data provided by the statistical analysis and weight calculation results of the 

correlation between the susceptibility map, the causative factors, and the landslide inventory map 

form the basis of this study's main conclusions. They indicate that landslides occur on slopes between 

30 and 40 degrees, as well as slopes over 40 degrees with an east or northeast orientation. Curvature 

is the final factor used for landslide susceptibility mapping, and almost all classes assign equal weight 

to it. It was found that the FR value of distance to stream, the highest value for the distance >2000, 

was found, whereas the lowest value was found to be for <500. Hence, the probability of landslides 

increases as the distance from the stream increases.  Also, for the FR value of distance to road, the 

highest value for the distance <500 was found, whereas the lowest value was found to be for 1000-

2000. In the same way, for land use, it was found that the highest probability of landslide was found 

for built-up areas, whereas the lowest was for water areas. As for geology, the highest value is for 

the Sangram Formation and the lowest is for the Galyang Formation. The accuracy of the landslide 

susceptibility model was evaluated using the ROC curve. For our frequency ratio model, the AUC 

prediction rate curve value is 0.710, indicating that the model is more accurate than the AHP method 

for this study area.

Our research has a few limitations. Our reliance on secondary data introduces possible inaccuracies 

with landslide positioning (±10-30 m); this is a problem particularly in steep terrain, where relative-

ly minor displacements may hold substantial implications on susceptibility (notably Guzzetti et al., 
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2012; Meten et al., 2022). While the results remain useful in terms of regional planning, site-specific 

applications must be field verified. Due to data availability, this study was limited to topographic, 

geological, and land use factors, but excluded dynamic factors such as rainfall intensity, soil moisture, 

and seismicity. These factors may greatly influence landslide initiation (Dahal et al., 2012); hence, 

omitting them may potentially reduce the outcomes of this study in terms of predicting landslide 

risk as dynamic conditions alter. Future studies could include, for example, remotely sensed rainfall 

data derived from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), or 

regional seismic micro tagging maps, as these would help to address the lack of these types of fac-

tors in the study. Moreover, this study does not account for the temporal changes that may influence 

landslide susceptibility. Overall, this study demonstrated that the FR and AHP approach for mapping 

landslide susceptibility in the study area was simple, reliable, and effective. Furthermore, it is found 

that FR is comparatively more accurate than AHP. These landslide susceptibility maps can prove to 

be helpful for government agencies, planners, decision-makers, and other concerned authorities to 

mitigate the effects of landslides and plan preventive and strategic ways to deal with existing and 

future landslides.
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