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ABSTRACT

The rapid increase in urban population has intensified the demand for infrastructure, resulting in the conver-
sion of natural surfaces, particularly vegetation, into built-up areas. Such non-vegetated surfaces absorb and
store more heat, contributing to higher land surface temperatures. This change in land cover is seen to incre-
ase the land surface temperature. Kathmandu has experienced rapid urban growth over the past few decades.
Recently, Kathmandu has been identified as being on the verge of climate change, especially in the context
of urban warming. This study has incorporated remotely sensed Landsat data, utilizing remote sensing tech-
niques, to effectively quantify the spatial extent of urban growth and its impact on land surface temperature
in Kathmandu Valley, Nepal. In this research, we employed supervised classification and change detection to
identify the spatial trends of land-use and land-cover change. After that, we obtained the spatial pattern of
LST using the thermal band of Landsat images. Based on our analysis, we found that the urban area increased
by 13% during the period from 2013 to 2019. The surface temperatures were greater for bare soil and urban
land use types. The land surface temperature ranges obtained were -3.270°C to 36.460°C in 2013, -1.910°C
to 27.030°C in 2016, and 13.260°C to 40.840°C in 2019. To mitigate urban warming, strategies such as ex-
panding urban forestry, adopting reflective building materials, and promoting sustainable urban planning are
recommended for Kathmandu Valley.
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INTRODUCTION

Urban population growth increases the need for infrastructure, resulting in the loss of vegetation and
its replacement with heat-absorbing built surfaces. This change in land cover results in an increase in
land surface temperature. Nepal is one of the ten least urbanized countries in the world (Joshi, 2023).
However, it is also one of the top ten fastest urbanizing countries. In 2014, the level of urbanization
was 18.2%, with an urban population of 5,130,000, and a rate of urbanization of 3% (Timsina et
al., 2020). Between 1978 and 2000 A.D,, studies in the Kathmandu Valley found a growth rate of
approximately 450% in urban areas. Additionally, the temperature in the Kathmandu Valley has been
recorded as 30 °C in 2005, 31 °C in 2012, and 35 °C in 2015 (Ishtiaque et al., 2017).

Land surface temperature means the skin temperature of the surface. It depends on isolation and
the nature of the surface or object material. Generally, water bodies, vegetative areas, and wet soil
are cooler than bare soil, sand, metal, and built-up areas. Therefore, a positive relationship exists be-
tween LST and urbanisation (K.C. & Shepherd, 2015). Satellite-based LST can be determined from
thermal emission at wavelengths in either infrared or microwave, which are “atmospheric windows”.
However, many uncertainties are involved in retrieving LST from radiance, which is directly mea-
sured by sensors onboard. Thermal infrared (TIR)-based LST retrievals are less uncertain than micro-
wave-based ones because of the smaller range of variation of surface emissivity in the TIR domain and

the stronger dependence of the radiance on temperature (Hulley et al., 2019).

Thus, urban growth has been identified as a critical process in the valley. It has led to population in-
flux, environmental deterioration, urban fragmentation, haphazard landscape development, stress on
ecosystem structure, and alteration of land use patterns (Akher & Chattopadhyay, 2017). According
to UN-HABITAT (2015), Kathmandu is vulnerable to the impact of climate change. Therefore, this
research claims to investigate the effect of urban growth on land surface temperature in the valley,
since LST is an essential factor controlling urban climate (Kathmandu Valley, Nepal: Climate Change
Vulnerability Assessment (Inu Pradhan Salike, 2015)

The main objective of this study is to quantify the spatial extent of urban growth, assess its influence
on land surface temperature patterns, and examine temporal changes in thermal behaviour across
the Kathmandu Valley. Additionally, the study aims to provide evidence-based insights to support

sustainable urban planning and climate-responsive strategies.

1. MATERIALS AND METHODS

1.1 Study Area

The study area is Kathmandu Valley of Nepal, which is in the Latitude range of 27°34'33"N to 27°49°4"
N and the Longitude range of 85° 11' 19" E to 85° 34' 57" E as shown in Figure 1. The Kathmandu
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Valley comprises the districts of Kathmandu, Lalitpur, and Bhaktapur. The average elevation is 1300
meters above mean sea level (Thapa & Murayama, 2012). It is surrounded by four high hills: Shivpu-
ri in the northwest, Chandragiri in the southwest, Nagarjun in the northeast, and Phulchoki in the
southeast. Their altitude ranges from 1500 m. to 2800 m (Bhattarai et al., 2017).

Figure 1. Study Area.

This valley was selected for this research due to its status as a rapidly urbanizing region experiencing
significant landscape transformation, which provides a critical context for analyzing urban thermal

impacts (Rimal et al., 2018).

1.2 Workflow

The overall workflow adopted for analyzing land surface temperature (LST) and urban growth in
Kathmandu Valley is shown in Figure 2. The process begins with the acquisition of Landsat images
for the years 2013, 2016, and 2019, followed by preprocessing steps including radiometric correc-
tion, atmospheric correction, and subsetting (clipping) to focus on the study area. LST is then derived
from the thermal bands, and image classification is performed to identify different land cover types.
Subsequently, LST classification and urban area analysis are carried out, followed by change detection
to examine spatial and temporal trends. The final step involves analysis and verification to ensure the

accuracy and reliability of the results.
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Figure 2. Workflow.

The primary dataset for this research consists of Landsat 8 imagery from the Operational Land Im-

ager (OLI) and Thermal Infrared Sensor (TIRS), Collection 1 Level-1 products, acquired on March
26, 2013; March 15, 2016; and January 3, 2019. Although more recent Landsat images (e.g., 2022,

2025) could provide updated information on land surface changes, this study focuses on the period

2013-2019 due to data availability and to maintain temporal consistency for trend analysis. Future

research could incorporate more recent imagery to examine ongoing urban growth and LST dynam-

ics.. These Landsat data can be freely accessed from the USGS portal and are processed by NASA to

generate radiometric calibration and atmospheric correction algorithms for the Level-1 products.

Landsat images are among the widely used satellite remote sensing data. Their spatial, spectral, and

temporal resolution made them useful for mapping and planning projects (Wulder et al., 2019).
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1.4 Radiometric Correction

Radiometric correction was applied to minimize errors in the satellite image’s digital numbers (DN).
This process enhances the quality and comparability of remotely sensed data, especially across mul-
tiple time periods (Chander et al., 2009). We used the empirical formula method for radiometric
calibration. DN values were converted to Top-of-Atmosphere (TOA) reflectance using band-specific

gain and bias values from the metadata:
TOA Reflectan ce = Gain * DN + Offset (1)

After conversion, TOA reflectance was adjusted for solar elevation using band math with the follow-

Ing expression:

Corrected Reflectance = TOA Reflectan ce/ sin (44.34755968°) 2

1.5 Atmospheric Correction

Atmospheric correction removes the effects of the atmosphere to derive surface reflectance, improv-
ing image interpretability (Rumora et al., 2020). Accurate correction requires parameters like water
vapor and aerosol distribution. Without such data, we used the Dark Object Subtraction (DOS)
method, which assumes some pixels are in complete shadow and their radiance is due to atmospheric
scattering. This path radiance is subtracted from all pixels. While less accurate, DOS is helpful when

atmospheric data is unavailable.

1.6 Land Surface Temperature

Land surface temperature was retrieved from the thermal infrared band of Landsat images (band 10

of Landsat 8). The basic steps for the retrieval of LST are given below:
Conversion of pixel values to radiance:

The pixel values from digital number units were converted into radiance using the header file’s pa-

rameters of Landsat images as follows:
L,=ML*QCAL+ AL (3)

This converts raw digital numbers (DN) from the satellite sensor into spectral radiance values, where
ML represents the multiplicative rescaling factor, QCAL is the quantized calibrated pixel value, and

AL is the additive rescaling factor, both obtained from the Landsat metadata file.
Atmospheric correction:

Removal of atmospheric effects from the thermal bands is essential to convert radiance to reflectance

measures. Therefore, atmospheric correction uses the Dark Object Subtraction (DOS) Method.
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Conversion of spectral radiance to at-sensor brightness temperature (BT):

Radiance values were then converted to at-sensor brightness temperature (in Celsius).
— K 97315 ()

BT =
K
ln<LA + 1)

Here, — 273.15 is the Kelvin temperature constant.
Determination of Land Surface Emissivity (LSE):

Emissivity was estimated based on land cover type. The Portion of Vegetation (PV) is calculated as

given in equation (5).

_( NDVI—NDVIL,. \
Py = (NDVImaX —NDVImm) &)
LSE = 0.004 * PV + 0.986 (6)

Land surface emissivity is calculated using the vegetation proportion, where the coefficients 0.004
and 0.986 are empirically derived constants that account for the emissivity characteristics of vegetat-

ed and non-vegetated surfaces.
Land Surface Temperature retrieval:

LST was calculated using the corrected brightness temperature and emissivity, applying the following

formula:
LST = L (7
1+(2# 8L ) s m(LsE)
2
Where, A is the central band wavelength of emitted radiance (11.45 pm)
0 =(22C) = (1.438* 10 *mK) ®)

with h is Planck’s constant (6.62*107*]s), ¢ is the velocity of light (2.998*10° m/s) and ¢ is the Boltz-
mann constant (1.38%10% J/K).

1.7 Image Classification

In image classification, we prefer supervised classification, which is a pixel-based approach. Since
supervised classification has generally been recommended for evaluating segmentation results, and
because classification accuracy is also believed to be highly dependent on the quality of segmentation
(Liu & Xia, 2010). Hence, supervised classification was thought to lead to a more accurate classifi-
cation of our project work (Maxwell et al., 2018). Similarly, this method uses the spectral signature
defined in the satellite image (Talukdar et al., 2020).
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1.8 Change Detection

The change detection approach is based on subtracting images acquired twice. This is performed on a
pixel-by-pixel level to create the difference image. In the process, the pixel value is deducted from the
initial and final images. Image differencing was used to detect urban changes in the images acquired

in 2013, 2016, and 2019, specifically comparing the 2013 image.

2. RESULTS

2.1 Land Use Land Cover Change

Supervised maximum likelihood classification was applied to Landsat imagery to generate Land Use
Land Cover (LULC) maps for 2013, 2016, and 2019 (Figures 3-5). The classification identified three
primary land cover categories: urban areas, forest cover, and cultivated land. This categorization
enabled systematic analysis of spatial and temporal changes associated with rapid urbanization in
Kathmandu Valley.

The classified maps reveal distinct spatial patterns of land cover transformation. Urban areas are
predominantly concentrated in the central valley floor, while forest cover remains largely distributed
along the peripheral hills. Cultivated land occupies the intermediate zones between urban centers and
forested hillsides. Over the six-year study period, a clear trend of urban expansion emerged, charac-

terized by the conversion of both agricultural and forest lands into built-up areas.

Figure 3. Supervised the Classification of Land Cover for analyzing the urban growth in 2013
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Figure 4. Supervised the Classification of Land Cover for analyzing the urban growth in 2016.

Figure 5. Supervised the Classification of Land Cover for analyzing the urban growth in 2019.

Table 1 presents the pixel count for each land cover class across the three time periods. The urban
class showed a substantial increase from 681,405 pixels in 2013 to 1,026,126 pixels in 2019, repre-
senting approximately 50% growth. Conversely, forest cover declined dramatically from 650,982 pix-
elsin 2013 to 339,749 pixels in 2016, though it showed partial recovery to 438,169 pixels by 2019.
Cultivated land exhibited fluctuating trends, increasing from 572,177 pixels in 2013 to 745,718
pixels in 2016, before declining to 640,269 pixels in 2019.
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Table 1. Total Pixels of Every Land Cover Class.

681405
650982
572177

Urban

Forest

819097
339749
745718

1026126
438169
640269

Cultivation

Table 2 translates these pixel counts into actual area coverage (in square meters), providing a more
tangible understanding of landscape transformation. Urban areas expanded from 613.26 million m?
in 2013 to 923.51 million m? in 2019, reflecting an increase of over 310 million m2. Forest cover
decreased from 585.88 million m? to 394.35 million m?, representing a loss of approximately 191.53
million m? over the study period. Cultivated land increased initially to 671.15 million m? in 2016 but

subsequently declined to 576.24 million m? by 2019.

Table 2. Total Area coverage of every land cover class.

Urban 613264500 737187300 923513400
Forest 585883800 305774100 394352100
Cultivation 514959300 671146200 576242100
Total 1714107600 1714107600 189410760

The percentage distribution of land cover classes (Table 3) provides critical insights into the propor-
tional changes across the landscape. Urban areas increased from 35.78% of the total study area in
2013 t0 48.76% in 2019, marking an increase of nearly 13 percentage points. This substantial growth
came primarily at the expense of forest cover, which declined from 34.18% to 20.82%. Cultivated
land maintained relatively stable coverage, varying between 30.04% and 30.42% across the study

period, though it experienced intermediate fluctuations.

Table 3. Total percentage coverage of every land cover class.

35.7774798
34.1801063
30.0424139

43.0070609
17.8386759
39.1542631

Urban 48.75717726
20.8199418

30.42288094

Forest

Cultivation
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2.2 Temporal Change Detection Statistics of Urban Growth

Change detection analysis was performed to quantify land cover transitions between the study peri-
ods. Tables 4 and 5 present the change statistics between 2013 and 2016, while Tables 6 and 7 show
the changes between 2016 and 2019.

Table 4 presents the percentage change matrix for the 2013-2016 period. The matrix shows that
76.66% of urban areas remained stable, while 17.42% of new urban area came from forest conver-
sion and 32.04% from cultivated land. Forest areas experienced significant transformation, with only
50.11% remaining as forest, and 49.90% undergoing class changes. Cultivated land showed 67.12%
stability, with losses primarily to urban expansion. The image difference row indicates urban areas
increased by 20.21%, forest decreased by 47.81%, and cultivated land increased by 30.33%.

Table 4. Percentage Change Statistics Table between years 2013-2016.

Percentage Cultivation Row Total Class Total

Urban

Forest

Cultivation
Class Total
Class Changes

Image Difference

Table 5 translates these percentages into actual area changes (in square meters) for 2013-2016. Urban
areas expanded by 123.93 million m?, growing from 613.26 million m? to 737.19 million m2. This
expansion occurred through the conversion of 102.05 million m? of forest and 165.00 million m?
of cultivated land. Forest cover declined dramatically by 280.11 million m?, decreasing from 585.88
million m? to 305.77 million m2. Cultivated land showed a net increase of 156.19 million m?, rising

from 514.96 million m? to 671.15 million m2.

Table 5. Area Change Statistics between years 2013-2016.

Area (sq. m) Urban Forest Cultivation = Row Total Class Total
Urban 470135700 102047400 165004200 737187300 737187300
Forest 7919100 293558400 4296600 305774100 305774100

Cultivation 135209700 190278000 345658500 671146200 671146200
Class Total 613264500 585883800 514959300 0 0
Class Changes 143128800 292325400 169300800 0 0
Image Difference 123922800 | -280109700 156186900 0 0
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Table 6 presents the percentage change matrix for the period 2016-2019. Urban areas maintained
64.04% stability, with 40.30% of new urban areas derived from cultivated land and a minimal contri-
bution (0.31%) from forest. Forest areas exhibited only 35.58% stability, with 64.42% of the land un-
dergoing class changes, while cultivated land had the lowest stability at 28.00%, with 72.00% of the
land transitioning. The image difference indicates urban areas increased by 0.86%, forests increased
by 28.97%, and cultivated land decreased by 14.14%.

Table 6. Percentage Change Statistics Table between years 2016-2019.

Forest Cultivation Row Total Class Total

Urban 40.301 100 100

Forest 31.695 100 100

Cultivation 28.003 100 100
Class Total 100 0 0
Class Changes 71.997 0 0
Image Difference -14.141 0 0

Table 7 presents the area-based change statistics for 2016-2019. Urban areas expanded by 186.32
million m?, increasing from 737.19 million m? to 923.51 million m2. This growth primarily came
from cultivated land conversion (270.48 million m?). Forest cover increased by 88.58 million m?,
rising from 305.77 million m? to 394.35 million m?, largely through conversion from cultivated areas
(196.03 million m?). Cultivated land declined by 94.90 million m?, decreasing from 671.15 million

m?2 to 576.24 million m2.

Table 7. Area Change Statistics between years 2016-2019.

Area (sq. m)

Urban

Forest

Cultivation

Row Total

Class Total

Urban 472086000 946800 270480600 743513400 743513400

Forest 72837000 108792900 212722200 394352100 394352100

Cultivation 192264300 196034400 187943400 576242100 576242100
Class Total 737187300 305774100 671146200 0 0
Class Changes 265101300 196981200 483202800 0 0
Image difference 6326100 88578000 -94904100 0 0

Overall, the change detection analysis reveals that urban areas expanded by approximately 310.25
million m? between 2013 and 2019, with cultivated land serving as the primary source of urban ex-
pansion throughout the study period. Forest cover showed a net decline of 191.53 million m? despite

the partial recovery in the later period.
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The urban growth graph for the study area's time periods is illustrated in Figure 6. The graph shows
us that the urban growth is gradually increasing. The temporal LULC trend, illustrated in Figure 6,
demonstrates a consistent upward trajectory of urban growth over the six-year study period. The data
clearly reveal that urbanization has been the dominant driver of land transformation, often occurring
at the expense of forest and agricultural lands. This pattern suggests unplanned urban sprawl and
underscores the urgent need for effective land-use management strategies to ensure sustainable urban

development.

Urban

1E+09
900000000
800000000
700000000
600000000
500000000
400000000
300000000
200000000
100000000
0

2013 2016 2019

Figure 6. Chart of total area coverage by urban growth.

3. MITIGATION STRATEGIES

To mitigate the impacts of rapid urban growth and rising land surface temperatures in Kathmandu
Valley, targeted actions are needed. Expanding green spaces through tree planting along the Ring
Road, major city areas, and dense neighborhoods, as well as promoting green roofs can reduce heat
buildup. Cool roofs in industrial zones, light pavements in public spaces, and reflective facades in
new residential areas should be encouraged. Integrating climate-responsive architecture that blends
traditional Nepali design with modern passive cooling can further reduce heat stress. Strengthened
public awareness, community involvement, and strict enforcement of planning and building codes

are also vital for effective heat mitigation in the Valley.

The implementation of these mitigation strategies requires coordinated efforts from government
agencies, municipal authorities, private developers, and citizens. While individual measures provide
benefits, the synergistic effect of combined strategies would be most effective in addressing the urban
warming challenge. Given the rapid pace of urbanization documented in this study, immediate action

is imperative to ensure a sustainable and livable future for Kathmandu Valley.
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4. DISCUSSION

4.1 Land Surface Temperature

The LST maps of the study area in 2013, 2016, and 2019 are shown below. LST ranged from -3.270°C
to 36.460°C in 2013, -1.91°C to 27.030°C in 2016, and 13.260°C to 40.840°C in 2019. The maxi-
mum temperature declined sharply in the year 2016 by around 90°C. However, the minimum tem-
perature has been increasing in subsequent years. There is a sudden decline in the maximum tem-
perature from 2013 to 2016, as some days of the year in the past could have been hotter, despite the
influence of the urban warming phenomenon caused by urban growth over time. LST pattern analysis
indicates a low temperature, represented by a blue tone, at the edges of all maps, which corresponds
to the forest area. The yellow patch in the middle represents the urban settlements, and the red patch-
es at the edges represent bare soil and even rocks in the high cliffs. A similar trend was observed in
studies conducted by Tran et al. (2017)

Figure 7. LST of Kathmandu of the years 2013.
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Figure 8. LST of Kathmandu of the years 2016.

Figure 9. LST of Kathmandu of the years 2019.
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Extreme fluctuations in temperature that were observed between 2013 and 2016 in this paper may
have been driven by seasonal or meteorological conditions, a factor also noted by Rani et al. (2021)
with respect to the temporal stability of Land Surface Temperature (LST). The observed spatial tem-
perature distribution, which was cooler on the vegetated perimeter and hotter in the urban core,
corresponds with recent research on the Urban Heat Island (UHI) effect in Kathmandu Valley. For
example, Khatri et al. (2025) also documented an intense and intensifying UHI effect in the valley,
linking land surface temperature increases directly with the expansion of built-up areas. Additionally,
the distinct differences in LST that were observed based on land cover (i.e., built-up areas and bare
soil having the highest) is consistent with the scientific literature on global land and the thermal prop-
erties of landscapes and other articles such as Guha et al. (2021). These comparisons reinforce that
the dynamics of LST in the Kathmandu Valley configuration reflect localized urban expansion within

the larger scope of globally observed climate patterns.

CONCLUSIONS

The study revealed a high rate of urban growth in the Kathmandu valley. The primary drivers of
such growth are high population influx and inadequate land use planning. As a result, productive
agricultural land and open areas are being replaced by concrete structures. This trend will become
more severe unless proper land-use plans and policies are implemented. Based on our analysis of the
thermal pattern of the study area over the given period, we found a gradual increase in temperature in
the urban area. The study proved that the surface temperature is influenced by urban growth. How-
ever, the study had some limitations. The resolution of the images was just moderate for classification
and change detection purposes. Despite a massive repository of Landsat imagery, it can sometimes be

challenging to find suitable photos that meet our requirements.

Hence, we recommend that, as urban growth in the Kathmandu Valley is in a critical condition, it is
high time that concerned authorities take necessary initiatives and that urban residents develop re-
silience to urban growth. We also recommend using high-resolution images and other classification

methods to accurately classify land cover to detect urban development in the area.
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