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ABSTRACT

The rapid increase in urban population has intensified the demand for infrastructure, resulting in the conver-
sion of natural surfaces, particularly vegetation, into built-up areas. Such non-vegetated surfaces absorb and 
store more heat, contributing to higher land surface temperatures. This change in land cover is seen to incre-
ase the land surface temperature. Kathmandu has experienced rapid urban growth over the past few decades. 
Recently, Kathmandu has been identified as being on the verge of climate change, especially in the context 
of urban warming. This study has incorporated remotely sensed Landsat data, utilizing remote sensing tech-
niques, to effectively quantify the spatial extent of urban growth and its impact on land surface temperature 
in Kathmandu Valley, Nepal. In this research, we employed supervised classification and change detection to 
identify the spatial trends of land-use and land-cover change. After that, we obtained the spatial pattern of 
LST using the thermal band of Landsat images. Based on our analysis, we found that the urban area increased 
by 13% during the period from 2013 to 2019. The surface temperatures were greater for bare soil and urban 
land use types. The land surface temperature ranges obtained were -3.270°C to 36.460°C in 2013, -1.910°C 
to 27.030°C in 2016, and 13.260°C to 40.840°C in 2019. To mitigate urban warming, strategies such as ex-
panding urban forestry, adopting reflective building materials, and promoting sustainable urban planning are 
recommended for Kathmandu Valley.
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INTRODUCTION

Urban population growth increases the need for infrastructure, resulting in the loss of vegetation and 

its replacement with heat-absorbing built surfaces. This change in land cover results in an increase in 

land surface temperature. Nepal is one of the ten least urbanized countries in the world (Joshi, 2023). 

However, it is also one of the top ten fastest urbanizing countries. In 2014, the level of urbanization 

was 18.2%, with an urban population of 5,130,000, and a rate of urbanization of 3% (Timsina et 

al., 2020). Between 1978 and 2000 A.D., studies in the Kathmandu Valley found a growth rate of 

approximately 450% in urban areas. Additionally, the temperature in the Kathmandu Valley has been 

recorded as 30 °C in 2005, 31 °C in 2012, and 35 °C in 2015 (Ishtiaque et al., 2017).

Land surface temperature means the skin temperature of the surface. It depends on isolation and 

the nature of the surface or object material. Generally, water bodies, vegetative areas, and wet soil 

are cooler than bare soil, sand, metal, and built-up areas. Therefore, a positive relationship exists be-

tween LST and urbanisation (K.C. & Shepherd, 2015). Satellite-based LST can be determined from 

thermal emission at wavelengths in either infrared or microwave, which are “atmospheric windows”. 

However, many uncertainties are involved in retrieving LST from radiance, which is directly mea-

sured by sensors onboard. Thermal infrared (TIR)-based LST retrievals are less uncertain than micro-

wave-based ones because of the smaller range of variation of surface emissivity in the TIR domain and 

the stronger dependence of the radiance on temperature (Hulley et al., 2019).

Thus, urban growth has been identified as a critical process in the valley. It has led to population in-

flux, environmental deterioration, urban fragmentation, haphazard landscape development, stress on 

ecosystem structure, and alteration of land use patterns (Akher & Chattopadhyay, 2017). According 

to UN-HABITAT (2015), Kathmandu is vulnerable to the impact of climate change. Therefore, this 

research claims to investigate the effect of urban growth on land surface temperature in the valley, 

since LST is an essential factor controlling urban climate (Kathmandu Valley, Nepal: Climate Change 

Vulnerability Assessment (Inu Pradhan Salike, 2015)

The main objective of this study is to quantify the spatial extent of urban growth, assess its influence 

on land surface temperature patterns, and examine temporal changes in thermal behaviour across 

the Kathmandu Valley. Additionally, the study aims to provide evidence-based insights to support 

sustainable urban planning and climate-responsive strategies.

1. MATERIALS AND METHODS 

1.1 Study Area

The study area is Kathmandu Valley of Nepal, which is in the Latitude range of 27°34’33"N to 27°49’4" 

N and the Longitude range of 85° 11' 19" E to 85° 34' 57" E as shown in Figure 1. The Kathmandu 
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Valley comprises the districts of Kathmandu, Lalitpur, and Bhaktapur. The average elevation is 1300 

meters above mean sea level (Thapa & Murayama, 2012). It is surrounded by four high hills: Shivpu-

ri in the northwest, Chandragiri in the southwest, Nagarjun in the northeast, and Phulchoki in the 

southeast. Their altitude ranges from 1500 m. to 2800 m (Bhattarai et al., 2017).

Figure 1. Study Area.

This valley was selected for this research due to its status as a rapidly urbanizing region experiencing 

significant landscape transformation, which provides a critical context for analyzing urban thermal 

impacts (Rimal et al., 2018).

1.2 Workflow

The overall workflow adopted for analyzing land surface temperature (LST) and urban growth in 

Kathmandu Valley is shown in Figure 2. The process begins with the acquisition of Landsat images 

for the years 2013, 2016, and 2019, followed by preprocessing steps including radiometric correc-

tion, atmospheric correction, and subsetting (clipping) to focus on the study area. LST is then derived 

from the thermal bands, and image classification is performed to identify different land cover types. 

Subsequently, LST classification and urban area analysis are carried out, followed by change detection 

to examine spatial and temporal trends. The final step involves analysis and verification to ensure the 

accuracy and reliability of the results.
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Figure 2. Workflow.

1.3 Data Source

The primary dataset for this research consists of Landsat 8 imagery from the Operational Land Im-

ager (OLI) and Thermal Infrared Sensor (TIRS), Collection 1 Level-1 products, acquired on March 

26, 2013; March 15, 2016; and January 3, 2019. Although more recent Landsat images (e.g., 2022, 

2025) could provide updated information on land surface changes, this study focuses on the period 

2013–2019 due to data availability and to maintain temporal consistency for trend analysis. Future 

research could incorporate more recent imagery to examine ongoing urban growth and LST dynam-

ics.. These Landsat data can be freely accessed from the USGS portal and are processed by NASA to 

generate radiometric calibration and atmospheric correction algorithms for the Level-1 products. 

Landsat images are among the widely used satellite remote sensing data. Their spatial, spectral, and 

temporal resolution made them useful for mapping and planning projects (Wulder et al., 2019). 
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1.4 Radiometric Correction

Radiometric correction was applied to minimize errors in the satellite image’s digital numbers (DN). 

This process enhances the quality and comparability of remotely sensed data, especially across mul-

tiple time periods (Chander et al., 2009). We used the empirical formula method for radiometric 

calibration. DN values were converted to Top-of-Atmosphere (TOA) reflectance using band-specific 

gain and bias values from the metadata:

*tanTOA Reflec ce Gain DN Offset= +  							                   (1)

After conversion, TOA reflectance was adjusted for solar elevation using band math with the follow-

ing expression:

/ ( . )°tan tan sinCorrected Reflec ce TOA Reflec ce 44 34755968= 				                (2)

1.5 Atmospheric Correction

Atmospheric correction removes the effects of the atmosphere to derive surface reflectance, improv-

ing image interpretability (Rumora et al., 2020). Accurate correction requires parameters like water 

vapor and aerosol distribution. Without such data, we used the Dark Object Subtraction (DOS) 

method, which assumes some pixels are in complete shadow and their radiance is due to atmospheric 

scattering. This path radiance is subtracted from all pixels. While less accurate, DOS is helpful when 

atmospheric data is unavailable.

1.6 Land Surface Temperature

Land surface temperature was retrieved from the thermal infrared band of Landsat images (band 10 

of Landsat 8). The basic steps for the retrieval of LST are given below:

Conversion of pixel values to radiance:

The pixel values from digital number units were converted into radiance using the header file’s pa-

rameters of Landsat images as follows:

*L ML QCAL AL= +m 									                     (3)

This converts raw digital numbers (DN) from the satellite sensor into spectral radiance values, where 

ML represents the multiplicative rescaling factor, QCAL is the quantized calibrated pixel value, and 

AL is the additive rescaling factor, both obtained from the Landsat metadata file.

Atmospheric correction:

Removal of atmospheric effects from the thermal bands is essential to convert radiance to reflectance 

measures. Therefore, atmospheric correction uses the Dark Object Subtraction (DOS) Method. 
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Conversion of spectral radiance to at-sensor brightness temperature (BT):

Radiance values were then converted to at-sensor brightness temperature (in Celsius).

.
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b l

									                     (4)

Here, – 273.15 is the Kelvin temperature constant.

Determination of Land Surface Emissivity (LSE):

Emissivity was estimated based on land cover type. The Portion of Vegetation (PV) is calculated as 

given in equation (5).

PV NDVI NDVI
NDVI NDVI

max min
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2

= -
-b l 									                    (5)

. * .LSE PV0 004 0 986= + 									                     (6)

Land surface emissivity is calculated using the vegetation proportion, where the coefficients 0.004 

and 0.986 are empirically derived constants that account for the emissivity characteristics of vegetat-

ed and non-vegetated surfaces.

Land Surface Temperature retrieval:

LST was calculated using the corrected brightness temperature and emissivity, applying the following 

formula:
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+ b ]l g

								                    (7)

Where, m  is the central band wavelength of emitted radiance (11.45 µm)

* ( . * )C h c mK1 438 102
2

v= = -b l 								                    (8)

with h is Planck’s constant (6.62*10-34 Js), c is the velocity of light (2.998*108 m/s) and v  is the Boltz-

mann constant (1.38*10-23 J/K).

1.7 Image Classification

In image classification, we prefer supervised classification, which is a pixel-based approach. Since 

supervised classification has generally been recommended for evaluating segmentation results, and 

because classification accuracy is also believed to be highly dependent on the quality of segmentation 

(Liu & Xia, 2010). Hence, supervised classification was thought to lead to a more accurate classifi-

cation of our project work (Maxwell et al., 2018). Similarly, this method uses the spectral signature 

defined in the satellite image (Talukdar et al., 2020).
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1.8 Change Detection

The change detection approach is based on subtracting images acquired twice. This is performed on a 

pixel-by-pixel level to create the difference image. In the process, the pixel value is deducted from the 

initial and final images. Image differencing was used to detect urban changes in the images acquired 

in 2013, 2016, and 2019, specifically comparing the 2013 image.

2. RESULTS

2.1 Land Use Land Cover Change

Supervised maximum likelihood classification was applied to Landsat imagery to generate Land Use 

Land Cover (LULC) maps for 2013, 2016, and 2019 (Figures 3-5). The classification identified three 

primary land cover categories: urban areas, forest cover, and cultivated land. This categorization 

enabled systematic analysis of spatial and temporal changes associated with rapid urbanization in 

Kathmandu Valley.

The classified maps reveal distinct spatial patterns of land cover transformation. Urban areas are 

predominantly concentrated in the central valley floor, while forest cover remains largely distributed 

along the peripheral hills. Cultivated land occupies the intermediate zones between urban centers and 

forested hillsides. Over the six-year study period, a clear trend of urban expansion emerged, charac-

terized by the conversion of both agricultural and forest lands into built-up areas.

Figure 3. Supervised the Classification of Land Cover for analyzing the urban growth in 2013
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Figure 4. Supervised the Classification of Land Cover for analyzing the urban growth in 2016.

Figure 5. Supervised the Classification of Land Cover for analyzing the urban growth in 2019.

Table 1 presents the pixel count for each land cover class across the three time periods. The urban 

class showed a substantial increase from 681,405 pixels in 2013 to 1,026,126 pixels in 2019, repre-

senting approximately 50% growth. Conversely, forest cover declined dramatically from 650,982 pix-

els in 2013 to 339,749 pixels in 2016, though it showed partial recovery to 438,169 pixels by 2019. 

Cultivated land exhibited fluctuating trends, increasing from 572,177 pixels in 2013 to 745,718 

pixels in 2016, before declining to 640,269 pixels in 2019.
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Table 1. Total Pixels of Every Land Cover Class.

2013 2016 2019

Urban 681405 819097 1026126

Forest 650982 339749 438169

Cultivation 572177 745718 640269

Table 2 translates these pixel counts into actual area coverage (in square meters), providing a more 

tangible understanding of landscape transformation. Urban areas expanded from 613.26 million m² 

in 2013 to 923.51 million m² in 2019, reflecting an increase of over 310 million m². Forest cover 

decreased from 585.88 million m² to 394.35 million m², representing a loss of approximately 191.53 

million m² over the study period. Cultivated land increased initially to 671.15 million m² in 2016 but 

subsequently declined to 576.24 million m² by 2019.

Table 2. Total Area coverage of every land cover class.

2013 2016 2019

Urban 613264500 737187300 923513400

Forest 585883800 305774100 394352100

Cultivation 514959300 671146200 576242100

Total 1714107600 1714107600 189410760

The percentage distribution of land cover classes (Table 3) provides critical insights into the propor-

tional changes across the landscape. Urban areas increased from 35.78% of the total study area in 

2013 to 48.76% in 2019, marking an increase of nearly 13 percentage points. This substantial growth 

came primarily at the expense of forest cover, which declined from 34.18% to 20.82%. Cultivated 

land maintained relatively stable coverage, varying between 30.04% and 30.42% across the study 

period, though it experienced intermediate fluctuations.

Table 3. Total percentage coverage of every land cover class.

2013 2016 2019

Urban 35.7774798 43.0070609 48.75717726

Forest 34.1801063 17.8386759 20.8199418

Cultivation 30.0424139 39.1542631 30.42288094
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2.2 Temporal Change Detection Statistics of Urban Growth

Change detection analysis was performed to quantify land cover transitions between the study peri-

ods. Tables 4 and 5 present the change statistics between 2013 and 2016, while Tables 6 and 7 show 

the changes between 2016 and 2019.

Table 4 presents the percentage change matrix for the 2013–2016 period. The matrix shows that 

76.66% of urban areas remained stable, while 17.42% of new urban area came from forest conver-

sion and 32.04% from cultivated land. Forest areas experienced significant transformation, with only 

50.11% remaining as forest, and 49.90% undergoing class changes. Cultivated land showed 67.12% 

stability, with losses primarily to urban expansion. The image difference row indicates urban areas 

increased by 20.21%, forest decreased by 47.81%, and cultivated land increased by 30.33%.

Table 4. Percentage Change Statistics Table between years 2013-2016.

Percentage Urban Forest Cultivation Row Total Class Total

Urban 76.661 17.418 32.042 100 100

Forest 1.291 50.105 0.834 100 100

Cultivation 22.048 32.477 67.123 100 100

Class Total 100 100 100 0 0

Class Changes 23.339 49.895 32.877 0 0

Image Difference 20.207 -47.81 30.33 0 0

Table 5 translates these percentages into actual area changes (in square meters) for 2013–2016. Urban 

areas expanded by 123.93 million m², growing from 613.26 million m² to 737.19 million m². This 

expansion occurred through the conversion of 102.05 million m² of forest and 165.00 million m² 

of cultivated land. Forest cover declined dramatically by 280.11 million m², decreasing from 585.88 

million m² to 305.77 million m². Cultivated land showed a net increase of 156.19 million m², rising 

from 514.96 million m² to 671.15 million m².

Table 5. Area Change Statistics between years 2013-2016.

Area (sq. m) Urban Forest Cultivation Row Total Class Total

Urban 470135700 102047400 165004200 737187300 737187300

Forest 7919100 293558400 4296600 305774100 305774100

Cultivation 135209700 190278000 345658500 671146200 671146200

Class Total 613264500 585883800 514959300 0 0

Class Changes 143128800 292325400 169300800 0 0

Image Difference 123922800 -280109700 156186900 0 0
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Table 6 presents the percentage change matrix for the period 2016–2019. Urban areas maintained 

64.04% stability, with 40.30% of new urban areas derived from cultivated land and a minimal contri-

bution (0.31%) from forest. Forest areas exhibited only 35.58% stability, with 64.42% of the land un-

dergoing class changes, while cultivated land had the lowest stability at 28.00%, with 72.00% of the 

land transitioning. The image difference indicates urban areas increased by 0.86%, forests increased 

by 28.97%, and cultivated land decreased by 14.14%.

Table 6. Percentage Change Statistics Table between years 2016-2019.

Urban Forest Cultivation Row Total Class Total

Urban 64.039 0.31 40.301 100 100

Forest 9.88 35.58 31.695 100 100

Cultivation 26.081 64.111 28.003 100 100

Class Total 100 100 100 0 0

Class Changes 35.961 64.42 71.997 0 0

Image Difference 0.858 28.968 -14.141 0 0

Table 7 presents the area-based change statistics for 2016–2019. Urban areas expanded by 186.32 

million m², increasing from 737.19 million m² to 923.51 million m². This growth primarily came 

from cultivated land conversion (270.48 million m²). Forest cover increased by 88.58 million m², 

rising from 305.77 million m² to 394.35 million m², largely through conversion from cultivated areas 

(196.03 million m²). Cultivated land declined by 94.90 million m², decreasing from 671.15 million 

m² to 576.24 million m².

Table 7. Area Change Statistics between years 2016-2019.

Area (sq. m) Urban Forest Cultivation Row Total Class Total

Urban 472086000 946800 270480600 743513400 743513400

Forest 72837000 108792900 212722200 394352100 394352100

Cultivation 192264300 196034400 187943400 576242100 576242100

Class Total 737187300 305774100 671146200 0 0

Class Changes 265101300 196981200 483202800 0 0

Image difference 6326100 88578000 -94904100 0 0

Overall, the change detection analysis reveals that urban areas expanded by approximately 310.25 

million m² between 2013 and 2019, with cultivated land serving as the primary source of urban ex-

pansion throughout the study period. Forest cover showed a net decline of 191.53 million m² despite 

the partial recovery in the later period.
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The urban growth graph for the study area's time periods is illustrated in Figure 6. The graph shows 

us that the urban growth is gradually increasing. The temporal LULC trend, illustrated in Figure 6, 

demonstrates a consistent upward trajectory of urban growth over the six-year study period. The data 

clearly reveal that urbanization has been the dominant driver of land transformation, often occurring 

at the expense of forest and agricultural lands. This pattern suggests unplanned urban sprawl and 

underscores the urgent need for effective land-use management strategies to ensure sustainable urban 

development.

Figure 6. Chart of total area coverage by urban growth.

3. MITIGATION STRATEGIES

To mitigate the impacts of rapid urban growth and rising land surface temperatures in Kathmandu 

Valley, targeted actions are needed. Expanding green spaces through tree planting along the Ring 

Road, major city areas, and dense neighborhoods, as well as promoting green roofs can reduce heat 

buildup. Cool roofs in industrial zones, light pavements in public spaces, and reflective facades in 

new residential areas should be encouraged. Integrating climate-responsive architecture that blends 

traditional Nepali design with modern passive cooling can further reduce heat stress. Strengthened 

public awareness, community involvement, and strict enforcement of planning and building codes 

are also vital for effective heat mitigation in the Valley.

The implementation of these mitigation strategies requires coordinated efforts from government 

agencies, municipal authorities, private developers, and citizens. While individual measures provide 

benefits, the synergistic effect of combined strategies would be most effective in addressing the urban 

warming challenge. Given the rapid pace of urbanization documented in this study, immediate action 

is imperative to ensure a sustainable and livable future for Kathmandu Valley.
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4. DISCUSSION

4.1 Land Surface Temperature

The LST maps of the study area in 2013, 2016, and 2019 are shown below. LST ranged from -3.270°C 

to 36.460°C in 2013, -1.91°C to 27.030°C in 2016, and 13.260°C to 40.840°C in 2019. The maxi-

mum temperature declined sharply in the year 2016 by around 90°C. However, the minimum tem-

perature has been increasing in subsequent years. There is a sudden decline in the maximum tem-

perature from 2013 to 2016, as some days of the year in the past could have been hotter, despite the 

influence of the urban warming phenomenon caused by urban growth over time. LST pattern analysis 

indicates a low temperature, represented by a blue tone, at the edges of all maps, which corresponds 

to the forest area. The yellow patch in the middle represents the urban settlements, and the red patch-

es at the edges represent bare soil and even rocks in the high cliffs. A similar trend was observed in 

studies conducted by Tran et al. (2017)

Figure 7. LST of Kathmandu of the years 2013.
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Figure 8. LST of Kathmandu of the years 2016.

Figure 9. LST of Kathmandu of the years 2019.
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Extreme fluctuations in temperature that were observed between 2013 and 2016 in this paper may 

have been driven by seasonal or meteorological conditions, a factor also noted by Rani et al. (2021) 

with respect to the temporal stability of Land Surface Temperature (LST). The observed spatial tem-

perature distribution, which was cooler on the vegetated perimeter and hotter in the urban core, 

corresponds with recent research on the Urban Heat Island (UHI) effect in Kathmandu Valley. For 

example, Khatri et al. (2025) also documented an intense and intensifying UHI effect in the valley, 

linking land surface temperature increases directly with the expansion of built-up areas. Additionally, 

the distinct differences in LST that were observed based on land cover (i.e., built-up areas and bare 

soil having the highest) is consistent with the scientific literature on global land and the thermal prop-

erties of landscapes and other articles such as Guha et al. (2021). These comparisons reinforce that 

the dynamics of LST in the Kathmandu Valley configuration reflect localized urban expansion within 

the larger scope of globally observed climate patterns.

CONCLUSIONS

The study revealed a high rate of urban growth in the Kathmandu valley. The primary drivers of 

such growth are high population influx and inadequate land use planning. As a result, productive 

agricultural land and open areas are being replaced by concrete structures. This trend will become 

more severe unless proper land-use plans and policies are implemented. Based on our analysis of the 

thermal pattern of the study area over the given period, we found a gradual increase in temperature in 

the urban area. The study proved that the surface temperature is influenced by urban growth. How-

ever, the study had some limitations. The resolution of the images was just moderate for classification 

and change detection purposes. Despite a massive repository of Landsat imagery, it can sometimes be 

challenging to find suitable photos that meet our requirements.

Hence, we recommend that, as urban growth in the Kathmandu Valley is in a critical condition, it is 

high time that concerned authorities take necessary initiatives and that urban residents develop re-

silience to urban growth. We also recommend using high-resolution images and other classification 

methods to accurately classify land cover to detect urban development in the area.
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